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An axisymmetric tube with a variable cross-sectional area, closed at both ends,
containing a polytropic gas is oscillated parallel to its axis at or near a resonant
frequency. The resonant gas oscillations in an equivalent tube of constant cross-section
contain shocks. We show how cone, horn and bulb resonators produce shockless
periodic outputs. The output consists of a dominant fundamental mode, where its
amplitude and detuning are connected by a cubic equation – the amplitude–frequency
relation. For the same gas, a cone resonator exhibits a hardening behaviour, while
a bulb resonator may exhibit a hardening or softening behaviour. These theoretical
results agree qualitatively with available experimental results and are the basis for
resonant macrosonic synthesis (RMS).

1. Introduction
This paper is motivated by the experimental results presented in Lawrenson et al.

(1998). They showed that by appropriately designing the shape of a closed container
the resonant oscillations of a gas in the container could reach macrosonic pressures
while remaining shockless. This result is in sharp contrast to resonant oscillations
in closed uniform cylindrical tubes, where acoustic saturation due to shocks is a
feature of the motion, see Betchov (1958), Gorkov (1963), Chester (1964), Seymour &
Mortell (1973, 1980) for periodic resonant oscillations, and Cox & Mortell (1983) and
Seymour & Mortell (1985) for the evolution of resonant oscillations. Our primary
purpose here is to demonstrate theoretically that for resonant cavities shaped like
a cone, a horn or a bulb, the nonlinear interaction between the cavity shape and
the gas leads to a shockless resonant output. The deliberate shaping of a waveform
by designing the shape of the resonator (i.e. the cross-sectional area variation of the
containing tube) to give the desired output is the basis for resonant macrosonic
synthesis (RMS) (see Lawrenson et al. 1998). The significance of RMS is that
continuous waveforms can be synthesized to allow a large amount of energy to
be added to the wave and extremely high dynamic pressure achieved while avoiding
acoustic saturation due to shocks. In this paper, we present the first analytical
solutions corresponding to RMS, and compare them with the numerical results of
Ilinskii et al. (1998) and Chun & Kim (2000).

Nonlinear resonant acoustic oscillations in a straight tube of constant circular
cross-section have been the subject of many studies over the last fifty years. The
review by Ilgamov et al. (1996) gives an extensive list of references. The question
naturally arises as to whether specific tube shapes can prevent the formation of
shocks, and hence allow a continuous (shockless) harmonic response to a resonant
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harmonic input. It has been known since the work of Mortell & Seymour (1972)
that small area variations, or ‘weak’ inhomogeneities, satisfying the conditions of
geometrical acoustics, do not prevent shock formation in a medium of finite extent
(see also Seymour & Mortell 1975). Keller (1977) investigated the case of pipes with
slowly varying cross-section and produced a nonlinear differential-integral equation
to describe the signal in the pipe. While this equation has been widely investigated,
see for example Ellermeier (1994) or Chester (1994), it suffers from the basic defect of
describing only small variations of a straight tube. It is therefore inherently incapable
of dealing with shapes such as the cones and bulbs used in the experiments of
Lawrenson et al. (1998). Chester (1991), by a careful choice of the condition at the
centre of a sphere, found continuous periodic oscillations inside a pulsating sphere
with a Duffing-like amplitude–frequency response. However, Galiev (1999) points
to recent work where an oscillating gas bubble produces a shock wave near the
bubble centre. Ellermeier (1994) used a technique similar to that of Chester (1994)
to examine the effect of material inhomogeneities on the resonant oscillations of a
nonlinear elastic slab. While he produced an equation to describe the relation between
the amplitude and frequency of resonant oscillations (i.e. a Duffing-like response), no
case of a particular inhomogeneity was solved.

There are two significant numerical investigations of RMS: those of Ilinskii et al.
(1998) and Chun & Kim (2000). Ilinskii et al. (1998) gave a numerical solution
for the problem and reproduced qualitatively the amplitude–frequency curves of the
experiments of Lawrenson et al. (1998). In a subsequent paper, Ilinskii, Lipkens &
Zabolotskaya (2001) included the effects of a thermoviscous boundary layer and
a simple turbulence model. Chun & Kim (2000) gave numerical solutions of the
one-dimensional nonlinear equations for resonant oscillations that explicitly include
attenuation terms related to viscosity. They found that the half-cosine-shape tube
(similar to a bulb) induced higher compression ratios than other shapes. The analytical
study of Ockendon et al. (1993) considered geometric variations characterized by
different orders of magnitude of the small parameter, and the equations of Chester
(1994) and Keller (1977) were recovered. The regime where area variations are large
enough to affect the linearized spectrum was also considered briefly, but no explicit
solution for any shape like a cone, horn or bulb was attempted. The authors also
gave a condition for the applicability of a quasi-one-dimensional model, used here
and in Ilinskii et al. (1998) and Chun & Kim (2000). Our asymptotic results hold
in this region, but we have not so restricted our investigation when comparing with
the results of the numerical integrations of Ilinskii et al. (1998) and Chun & Kim
(2000). Hamilton, Ilinskii & Zabolotskaya (2001) examined the case of a tube with a
slowly varying cross-section. However, they were also limited to small variations in
cross-sectional area of a cylinder with constant, but arbitrary, cross-section. Again,
this has the limitation of not being able to deal with the shapes of interest for RMS.
Finally, Mortell & Seymour (2004) have analysed the resonant forced oscillations of
a nonlinear elastic panel where the material inhomogeneity has a ‘cone-like’ structure.
The amplitude–frequency curves are explicitly calculated and the dependence on
various parameters exhibited.

It is well known that the critical factor in the formation of shock waves in a
straight cylindrical tube is the excitation, via nonlinearity, of an infinite number of
modes whose frequencies are integer multiples of the fundamental. The modes emerge
from linear undamped acoustic theory. Thus, it makes sense to seek resonator shapes
leading to eigenvalues of the linear problem that are not integer multiples of the
lowest eigenvalue, when the eigenvalues are said to be incommensurate. Then we can
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expect that shocks will not form and a continuous periodic output, dominated by the
lowest eigenmode, will follow. The experimental results of Lawrenson et al. (1998)
indicate quite clearly that conical, horn and bulb shaped resonators allow shock-
free motions. Thus, for these shapes, the linear eigenvalue problem should yield
incommensurate eigenvalues. Of course the critical question then is whether we can
solve the corresponding two-point boundary-value problem for the eigenfunctions
and the eigenvalues. Using a technique introduced by Varley & Seymour (1988),
we find a class of resonator shapes, including conical and bulb shapes, for which
the acoustic eigenvalue problem can be solved explicitly. Thus, the solution to the
nonlinear resonant problem is continuous (shockless) with an amplitude that depends
on the detuning from resonance. We use a Duffing-type perturbation expansion to
find the amplitude–frequency relation. Mortell & Seymour (2005) is a simple example
of this procedure. It should be noted that the procedure given here does not depend
on resonator shapes being small deviations from the cylindrical.

2. Formulation and linear theory
We consider the one-dimensional motion of a polytropic gas contained in a tube

of arbitrary axisymmetric shape and length L. The tube is closed at both ends and
is oscillated along its axis by an external periodic driving force. This is essentially
the experimental set-up of Lawrenson et al. (1998). It is our objective to reproduce
theoretically their experimental amplitude–frequency curves for tubes shaped like
cones or bulbs.

Following Ilinskii et al. (1998), we use Eulerian coordinates moving with the
resonator. If s(x) is the cross-sectional area and a(t) the imposed acceleration of the
resonator, the equations of conservation of mass and momentum relating the velocity
and density in a polytropic gas are:

∂(sρ)

∂t
+

∂

∂x
(suρ) = 0, (1)

and
∂u

∂t
+ u

∂u

∂x
+ ρ−1 ∂p

∂x
= −a(t). (2)

Pressure and density are measured from their values in a reference state (p0, ρ0), so
that

p

p0

=

(
ρ

ρ0

)γ

= (1 + e)γ = 1 + γ e +
γ (γ − 1)

4
e2 + . . . , (3)

where e(x, t) = ρ/ρ0 − 1 is the condensation, and a0 =
√

γp0/ρ0 the associated
sound speed. Velocity, pressure and density are non-dimensionalized with respect to
(a0, ρ0a

2
0, ρ0), and (u, p, ρ) are considered as functions of length and time (Lx, La−1

0 t).
Equation (2) becomes

∂u

∂t
+ u

∂u

∂x
+ ργ −2 ∂ρ

∂x
= −a(t). (4)

For later convenience, we introduce the new variables e(x, t), f (x, t) by

f (x, t) = s(x)u(x, t), e(x, t) = ρ(x, t) − 1. (5)

Since the resonator is closed at both ends, the boundary conditions are

f (0, t) = 0 = f (1, t). (6)
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To examine the resonance problem we take the applied acceleration as

a(t) = ε3 cos θ, (7)

where θ = ωt and 0 < ε � 1.

We seek periodic solutions that have the same period as the external forcing:

f

(
x, t +

2π

ω

)
= f (x, t), (8)

and assume a perturbation expansion of the form:

e(x, t) = εe1(x, t) + ε2e2(x, t) + ε3e3(x, t) + . . . , (9)

f (x, t) = εf1(x, t) + ε2f2(x, t) + ε3f3(x, t) + . . . , (10)

where |ei | , |fi | = O(1), i = 1, 2, 3 . . . .

Then, at O(ε), we obtain the linear problem on 0 � x � 1:

∂f1

∂t
+ s(x)

∂e1

∂x
=0, s(x)

∂e1

∂t
+

∂f1

∂x
= 0, (11)

with

f1(0, t) = 0, f1(1, t) = 0. (12)

Eliminating e1 from (11), f1(x, t) satisfies

∂2f1

∂t2
− s(x)

∂

∂x

(
1

s

∂f1

∂x

)
= 0, (13)

which is the Webster horn equation (Pierce 1989).
Separating variables:

f1(x, t) =X(x)T (t) (14)

leads to the eigenvalue problem on 0 � x � 1:

d

dx

(
1

s(x)

dX

dx

)
+

λ2

s(x)
X = 0, (15)

with

X(0) = 0, X(1) = 0. (16)

Linear equations such as (12) and (13) are standard in problems where material
properties vary with position, see Ellermeier (1994). The crux of the matter arises, of
course, in solving (12) and (13) analytically for physically interesting area functions
s(x). We are not aware of the use of analytical solutions to (12) and (13) that
correspond qualitatively to the resonator shapes in the experiments described in
Lawrenson et al. (1998). Such solutions are, however, implicit in the work of Varley
& Seymour (1988), and here we exploit these to solve the acoustic resonance problem
in tubes of varying cross-sectional area that correspond to experimental conditions.

3. Nonlinear theory; amplitude-frequency relation
We will assume, pro tem, that solutions f1(x, t) to (14)–(16) are of the form

f1(x, θ) = Aφ(x) sin θ, (17)
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where A is an arbitrary amplitude. Here, φ(x) is the eigenfunction determined by (15)
and (16) corresponding to the fundamental eigenvalue λ1, and normalized so that

∫ 1

0

s−1(x)φ2(x) dx =1, (18)

while

θ =ωt = (λ1 + ε2δ + . . .)t, (19)

where ε2δ measures the detuning.
On using (11) and (17), the corresponding representation for e1(x, θ) is

e1(x, θ) =
A

λ1s(x)
φ′(x) cos θ. (20)

It should be noted from (19) that we have expanded the frequency, ω, in a Duffing-
like expansion about the fundamental frequency ω = λ1. It will emerge at O(ε3) that
the amplitude A, arbitrary within linear theory, will be connected to the frequency ω

through the amplitude–frequency relation.
The equation to determine f2(x, θ) now becomes

∂

∂x

(
1

s

∂f2

∂x

)
− λ1

2

s

∂2f2

∂θ2
= A2C2(x) sin 2θ, (21)

where

C2(x) =
λ1

s2

[
(γ + 1)φφ′ − 2

s ′

s
φ2

]
,

and

f2(0, θ) = 0, f2(1, θ) = 0. (22)

Then, setting

f2(x, θ) = A2B(x) sin 2θ, (23)

B(x) is determined by

d

dx

(
1

s

dB

dx

)
+

(2λ1)
2

s
B = C2(x), (24)

with

B(0) = 0, B(1) = 0. (25)

Since 2λ1 is not an eigenvalue, B(x) exists.
The equation to determine f3(x, θ) is of the form

∂

∂x

(
1

s

∂f3

∂x

)
− λ1

2

s

∂2f3

∂θ2
= C1(x) sin θ + A3C3(x) sin 3θ, (26)

with

f3(0, θ) = 0, f3(1, θ) = 0, (27)

and where

C1(x) =

[
A3E1(x) + A

δφ′

λ1s

]′

+ λ1

[
A3C4(x) − 1 − A

δφ

s

]
. (28)
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In (28),

C4(x) = − 1

2s

[
φ

(
B

s

)′

+ B

(
φ

s

)′]

+
(γ − 2)

s

[
λ1

(
φD − 1

λ2
1

φ′D′
)

+
1

4s
(φB ′ + 4φ′B)

]

− (γ − 2)

8s3

[
λ1φ

3 − 2s ′

λ1s
φ2φ′

]
+

(γ − 2)(γ − 6)

8λ1s3
φ(φ′)2, (29)

D(x) =

∫ x

0

{
1

2s2

[
(γ − 3)φφ′ +

s ′

s
φ2

]}
dx, (30)

and

E1(x) = − 1

4λ1s2

[(
φ′B ′ + 2λ2

1φB
)]

− 1

s
(φD)′

+
1

8s3

[
(2γ − 3)φ2φ′ − 2s ′

s
φ3 +

1

λ2
1

(φ′)3
]
. (31)

Note that, except for the detuning and forcing terms, all terms on the right-hand
side of (26) are proportional to A3. The details of C3(x) are not required in the rest
of the analysis.

Now we let

f3(x, θ) = P (x) sin θ + Q(x) sin 3θ. (32)

The equation to determine Q(x) is of the form

d

dx

(
1

s

dQ

dx

)
+

(3λ1)
2

s
Q =A3C3(x), (33)

with

Q(0) = 0, Q(1) = 0. (34)

Since 3λ1 is not an eigenvalue, Q(x) exists with no restriction on A.
P (x) is determined by

d

dx

(
1

s

dP

dx

)
+

λ2
1

s
P =A3[λ1C4(x) + E′

1(x)] − Aλ1δ

[
φ

s
− λ−2

1

(
φ′

s

)′]
− λ1, (35)

with

P (0) = 0, P (1) = 0. (36)

Since λ1 is an eigenvalue, a solution to (35) and (36) exists only if∫ 1

0

{
A3[λ1C4(x) + E′

1(x)] − Aλ1δ

[
φ

s
− λ−2

1

(
φ′

s

)′]
− λ1

}
φ(x) dx = 0. (37)

This simplifies to ∫ 1

0

{A3[λ1C4(x) + E′
1(x)] − λ1}φ(x) dx = 2Aλ1δ. (38)

Equation (38) is thus the required amplitude–frequency relation that implies that
A satisfies the cubic equation

NA3 − 2δλ1A= M, (39)
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where

N =

∫ 1

0

[λ1C4(x) + E′
1(x)]φ(x) dx, M = λ1

∫ 1

0

φ dx. (40)

For a specific area variation s(x), equation (39) will yield an amplitude–frequency
curve relating the amplitude A and the detuning δ for the shaking of a closed tube in
the neighbourhood of the fundamental resonance.

If the tube is at rest, but the gas is driven by a piston at x =1, the boundary
condition (6) is replaced by

f (1, t) = ε3 cos θ. (41)

P (x) is now determined by

d

dx

(
1

s

dP

dx

)
+

λ2
1

s
P =A3[λ1C4(x) + E′

1(x)] − Aλ1δ

[
φ

s
− λ−2

1

(
φ′

s

)′]
, (42)

with

P (0) = 0, P (1) = 1, (43)

where C4(x) and E1(x) are given by (29) and (31).
The amplitude–frequency relation is then (39) with N given by (40) and

M =

∫ 1

0

[
λ2

1

x

s
+

(
1

s

)′]
φ dx. (44)

It remains to implement (39) by specifying s(x) corresponding to the cone, horn or
bulb resonators, and solving (15), (16) for the eigenfunction φ(x).

If N = 0 in (39), our expansion yields the linear result, with unbounded amplitude
for δ =0. In this case, we adjust our ansatz and in (7) take the applied acceleration
to be a(t) = ε5 cos θ, with the expansion for θ in (19) being θ =(λ1 + ε4δ + . . .)t. Then,
the expansions (9) and (10) yield a quintic equation for A at O(ε5).

4. Solution of eigenfunction equations for variable area
To solve the nonlinear acoustic problem (1) to (8), we must first solve the linear

equation with variable coefficients of the form (see (11)),

λ2
1

∂2g

∂θ2
− s(x)

∂

∂x

(
1

s

∂g

∂x

)
= 0. (45)

Varley & Seymour (1988) showed that solutions of (45) can be written in terms of
solutions of the equivalent constant coefficient equation

λ2
1

∂2G

∂θ2
− ∂2G

∂x2
= 0 (46)

by transformations of the form

g(x) = R(x)
∂2G

∂x2
+ q1(x)

∂G

∂x
+ k2G, (47)

where R(x) =
√

s(x) and k2 is a constant. s(x), q1(x) are determined by the ordinary
differential equations

k2 +

(
q1

s
+

s ′

2s3/2

)′

=
l2

s
, (48)

l2 + q ′
1 = k2s, (49)
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and k2, l2 are arbitrary constants. Thus, the solutions s(x) and q1(x) of (48) and (49)
allow the reduction of the variable coefficient equation (45) to the constant coefficient
equation (46) through the transformation (47). Accordingly, we can define the shapes
s(x) of the resonator for which the simple closed-form solutions of the eigenfunction
equation (45) can be found.

The equations (48) and (49) correspond to the case N = 2 in Varley & Seymour
(1988). There, it is shown that the solutions for R(x) and q1(x) are given by

R(x) =
1

k2

µ2z1 − µ1z2

z2 − z1

, (50)

q1(x) =
µ1 − µ2

k2

z1z2

z2 − z1

, (51)

where z1, z2 satisfy the Riccati equation

z′
n + z2

n = µn (n= 1, 2), (52)

and k2l2 = µ1µ2. Then, one solution of (52) is

zn(x) = −
√

−µn tan[
√

−µn(x + xn)], (53)

where xn is an arbitrary constant.
The varying cross-sectional area s(x) = R2(x) given by (50) and (53) are general

enough to generate non-monotonic shapes such as a bulb. For this case, N = 2, the
eigenfunction φ1(x) for (15) and (16) is now of the form

φ1(x) = R(x)F ′′(x) + q1(x)F ′(x) + k2F, (54)

with

F ′′ + λ2F = 0. (55)

For the simpler case, N = 1, the corresponding result is

R(x) = − 1

k1

z1, k1l1 = µ1, (56)

where

φ1(x) = R(x)F ′(x) − k1F. (57)

We note that R(x) given by (56) is monotonic and hence corresponds to shapes
such as a horn or a cone. A special limit of the N = 1 case corresponding to the limit
l1 → 0 yields the cone shape:

R(x) = 1 + kx. (58)

For more details and generalizations of the above, see Varley & Seymour (1988).

5. Cone, horn and bulb resonators
We are now in a position to solve the eigenvalue problem (15) and (16) for a

resonator shaped like a cone, a horn and a bulb. For the bulb shape we need the
N = 2 representation for R(x) given by (50); for the horn, N = 1 and R(x) is given by
(56). The cone is a special case of the horn corresponding to l1 → 0, given by (58).

5.1. Cone resonator: R(x) = (1 + kx)

A cone is the simplest example of a non-uniform shape for which there is an exact
solution to (15) and (16). We let

φ1(x) = (1 + kx)F ′ − kF (59)
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for an arbitrary constant k, where F (x) satisfies (55). Then direct substitution confirms
that φ1(x) satisfies (15). Conditions (16) yield the eigenvalue equation

tan λ=
λk2

λ2 + kλ2 + k2
. (60)

It is clear from (60) that for k �= 0 the higher eigenvalues are not integer multiples of
the fundamental. For k = 7 (similar to the example in Lawrenson et al. 1998), the first
three eigenvalues are λ1 = 3.98 ( = 1.27π), λ2 = 6.95 ( = 2.21π), λ3 = 9.95 ( = 3.17π),
and these are close to those in figure 6 of Ilinskii et al. (1998).

The fundamental eigenfunction is given by

φ1(x) = χ
(
λ1k

2x cos λ1x −
[
λ2

1 + kxλ2
1 + k2

]
sin λ1x

)
, (61)

where λ= λ1 is the smallest positive eigenvalue of (60) and the constant χ is determined
by (18). Since 3λ1 is not a solution to (60), the term involving C3(x) in (26) does not
resonate and hence the terms in the perturbation expansion at O(ε3) are periodic and
thus bounded.

We recover the case of a uniform circular cylinder by setting k = 0, so that R(x) ≡ 1.

Then, the positive eigenvalues of (60) are λn = nπ, and (61) yields φ1(x) =
√

2 sin nπx.

Now, the higher eigenvalues are integer multiples of the fundamental eigenvalue,
resonance in the higher modes cannot be avoided and shocks occur (see Chester
1964; Seymour & Mortell 1980).

5.2. Horn resonator: R(x) =
√

|a/b| tan(
√

|ab|(x + x0))

Curved cone-like resonators can be described by cross-sections of the form

s(x) =
∣∣∣a
b

∣∣∣ tan2(
√

|ab|(x + x0)). (62)

The results of Varley & Seymour (1988) for the case N = 1 imply that, if s(x) is
given by (62), then

φ1(x) = R(x)F ′ + aF (63)

is a solution of (15) for arbitrary constants a(< 0), b(> 0) and x0, when F (x) satisfies
(55). Alternatively, if φ1(x) is given by (63) and

1

s
φ′

1 =
1√
s
E′ + bE (64)

with

F ′ = E, E′ = −λ2F, (65)

then φ1 is a solution to (15), provided s(x) satisfies

s ′

2
√

s
+ a − bs = 0 (66)

which has (62) as one solution.
The boundary conditions (16) yield the eigenvalue equation

tan λ=
λ(β − α)

λ2 + αβ
, (67)

where

α =
a

R(0)
, β =

a

R(1)
. (68)
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Again, the eigenvalues are incommensurate, i.e. the higher modes are not integer
multiples of the fundamental. The first three eigenvalues for (α, β) = (−0.66, −0.083)
are λ1 = 3.31 ( = 1.05π), λ2 = 6.37 ( = 2.03π), λ3 = 9.48 ( = 3.017π). The eigenfunction
φ1(x) is normalized using the condition (18).

We note that Mortell & Seymour (2004) have examined the shockless resonant
vibrations of a nonlinear elastic panel with an inhomogeneity given by (62).

5.3. Bulb resonator: R(x) = (µ2z1 − µ1z2)/[(z2 − z1)k2]

Bulb-like resonators are described by cross-sections of the form (50) where z1(x),
z2(x) are given by (52) and (53). The form of the eigenfunction is then given by (54)
and (55), and the eigenfunction is normalized by (18).

The boundary conditions (16) yield the eigenvalue equation

tan λ=
λ(λ2(q1R0 − R1q0) − q1k2 + k2q0)(

λ4R1R0 − λ2(R1k2 − q1q0 + k2R0) + k2
2

) , (69)

where R0 = R(0), R1 = R(1), q0 = q1(0) and q1 = q1(1). The first three eigenvalues
are given by λ1 = 4.43 ( = 1.41π), λ2 = 6.96 ( = 2.22π), λ3 = 9.87 ( = 3.14π) when
µ1 = −9, µ2 = −3, k2 = 9.4, x1 = −1.65, x2 = 2. We note that λ2 and λ3 are close to
those in figure 12(a) in Ilinskii et al. (1998) for a bulb with a flare.

6. Results and comparison with experiments
Here, we present results for shapes and amplitudes that are qualitatively similar to

those used in the experiments of Lawrenson et al. (1998). The values of ε = 0.05, 0.08
and 0.1 are similar to the values in the experiments of Lawrenson et al. (1998). The
figures illustrate typical shapes for cone, horn and bulb resonators. The corresponding
theoretical response curves are compared with the experimental and numerical results
where they are available in figures 3–5. In all cases here γ = 1.13, which corresponds
approximately to the gases used in the experiments of Lawrenson et al. (1998).

The graphs of the response curves of p1/p0 represent the ratio of the amplitude of
the pressure signal in the fundamental mode to the ambient pressure at the small end
of the resonator, x = 0. They are calculated from (3), (5) and (20) by∣∣∣∣p1

p0

∣∣∣∣ =
Aγεφ′

1(0)

λ1s(0)
. (70)

The compression ratio at x = 0 is then found from:

pmax

pmin

=
1 + |γ (εA/λ1s(0)) φ′(0)|
1 − |γ (εA/λ1s(0)) φ′(0)| . (71)

Hence, a value of |p1/p0| around 0.5 will produce a compression ratio of 3.

The numerical investigation reported in Ilinskii et al. (1998) has several authors in
common with the experimental paper of Lawrenson et al. (1998). While the former
state that ‘qualitatively, the (numerical) model describes all phenomena observed in
the experiments: resonance frequency shift, hysteresis and waveform distortion’, the
only reported quantitative comparison with experiment is for the wave shape for a
conical resonator, see their figure 14 and table 1. The reference point for Bednarik &
Cervenka (2000) is the numerical simulations of Ilinskii et al. (1998), while Chun &
Kim (2000) provide only numerical solutions. Hamilton et al. (2001) compare their
theory with finite-difference solutions of the complete nonlinear equations for one-
dimensional motion in a resonator of arbitrary shape, and conclude that the analytical
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results are in reasonable agreement with the numerical results. Ockendon et al. (1993)
neglect dissipation and have no comparison with experiments.

Because of a lack of experimental input data, a detailed quantitative comparison
of the experimental results of Lawrenson et al. (1998) with the theoretical predictions
given here is not possible. However, qualitatively the simple model given here yields the
basic observations of the experiments: the shift in the resonant frequency, hysteresis
and waveform distortion from higher harmonics. The cone and horn resonators
exhibit a nonlinear hardening behaviour, while the bulb resonator may exhibit a
hardening or softening behaviour for the same gas. As remarked in Lawrenson et al.
(1998), ‘if the properties of the gas in the cavities were the primary factor influencing
nonlinear behaviour we would expect to see similar frequency response curves.’ We
have found that for all three cases (cone, horn and bulb), the amplitude response curve
is multivalued and strong hysteresis is present. The experiments in Lawrenson et al.
(1998) and the numerical solutions in Ilinskii et al. (1998) show that hysteresis for the
cone and bulb occurs only for sufficiently large driver amplitudes. Ilinskii et al. (1998)
include energy dissipation in their model, and choose the value of a dimensionless
attenuation coefficient to match the experimental Q-factor. Subsequently, the effects
of the thermoviscous boundary layer and a simple turbulence model were included in
Ilinskii et al. (2001). We, on the other hand, focus solely on the interaction between the
gas nonlinearity and the resonant cavity shape with no form of dissipation included,
so there is no doubt as to the fundamental mechanism involved. It is found by Ilinskii
et al. (1998) that for a bulb with a flare, a very pronounced hysteresis is apparent (see
figure 13), and we note that the second and third eigenvalues for our bulb resonator
closely match those in Ilinskii’s flared bulb and strong hysteresis is predicted.

Our results, including qualitative comparisons with the experiments of Lawrenson
et al. (1998) and the numerical simulations of Ilinskii et al. (1998) and Chun &
Kim (2000), are illustrated in figures 1–7. The general forms of the three shapes
(cone, horn and bulb) used in the analytical model are shown in figure 1. We
choose the parameter k = 7 in (58), corresponding to the shape used by Lawrenson
et al. (1998), and in figure 2 compare our theoretical results with experimental and
numerical results. There is good qualitative agreement with Lawrenson et al. (1998),
Ilinskii et al. (1998) and Chun & Kim (2000). Similar comparisons are made in
figure 3 for the response curves for a bulb resonator with parameters chosen as:
µ1 = −9, µ2 = −3, k2 = 9.4, x1 = −1.65, x2 = 2. Again, the qualitative agreement with
the experimental and numerical results is clear. In particular, the response curve
exhibits a softening behaviour, in contrast to the cone response of figure 2. Figure 4
exhibits the response curves for several horn shapes with increasing values of
R(1) = 2.45, 4.57 and 8.0. All give hardening responses: there are no experimental or
numerical results available for comparison.

Chun & Kim (2000) give a numerical simulation for what they describe as a
half-cosine shaped tube. In figure 5, we model the half-cosine shape by scaling the
bulb shape of figure 1 by a factor of W = 0.69, that is, stretching the bulb shape for
0 � x � 0.69 over 0 � x � 1; W = 1 gives the original shape. There is qualitative
agreement with Chun & Kim (2000).

A measure of the commercial viability of RMS is the maximum compression ratio,
defined by (71). Commercial air compressors must achieve a pressure ratio of between
3 and 13. Lawrenson et al. (1998) have reported experimentally produced values of 12
for a cone and 17 for a horn cone, though no numerical simulations have produced
ratios as high as these. For example, Ilinskii et al. (1998) report a ratio of 6.4 for a
cone with an applied dimensionless acceleration of 5×10−4; they report no results for
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Figure 1. Shapes used in analytical model. (a) Cone shape. (b) Large horn shape.
(c) Bulb shape.

a bulb or horn cone. Chun & Kim (2000) report a pressure ratio of 3.1 for a cone and
6.5 for their half-cosine shaped tube with an input acceleration of 300 m s−2. Here, we
find a compression ratio of 4.0 for a cone and 5.0 for a bulb when using ε = 0.136,

corresponding to 300 m s−2. Qualitatively, our results are more in line with those of
Chun & Kim (2000) than Ilinskii et al. (1998). The values given by our analytical
results lie within the commercial range.

The cubic amplitude–frequency relation (39) results from the ansatz that an applied
acceleration at O(ε3) yields an output of O(ε). If, for a specific value of the parameters,
N = 0 in (39), the expansion produces an unbounded response at δ =0. However, if
now the ansatz in (7) is changed to a(t) = ε5 cos θ, then the perturbation scheme yields
a quintic equation for the amplitude A at fifth order, again with an output of O(ε).
We have, of course, neglected all dissipative effects, but in our non-dissipative theory,
the maximum amplitude of the peak output is achieved when N ∼ 0 in (39). By
varying W we find that this occurs for W ∼ 0.759 : the corresponding bulb shape is
illustrated in figure 6. When W changes from 0.75907 to 0.75908, the response curve
changes from hardening to softening as N passes through a zero. The amplification
has increased by an order of magnitude around the fundamental resonant frequency.
It may be that in an experiment this effect is masked by dissipation, but in designing
a resonator for maximum amplitude, choosing a shape for which N ∼ 0 may well
be optimal. This possibility is illustrated in figure 6(d), where a compression ratio in
excess of 20 is achieved.
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Figure 2. Comparison of cone response curves. (a) Experimental frequency response curves at
three (not identified) drive amplitudes at the small end of a cone resonator filled with R-134a.
This is figure 13 in Lawrenson et al. (1998). (b) Compression ratio as a function of frequency,
calculated numerically for three drive accelerations. This is figure 4(a) in Chun & Kim (2000).
(c) Frequency response of the fundamental pressure wave in a conical resonator calculated
numerically for non-dimensional drive accelerations 10−4, 2.5 × 10−4 and 5 × 10−4. This is
figure 8 in Ilinskii et al. (1998), with the same geometry as in figure 2(a) above. (d) Theoretical
frequency response of the fundamental pressure wave in a conical resonator calculated from
equation (70) for drive accelerations corresponding to figure 8 in Ilinskii et al. (1998), with
the same geometry as in figure 2(a) above. (e) Theoretical compression ratio (pmax/pmin) as a
function of frequency for a cone resonator, calculated from equation (71), for the three drive
accelerations corresponding to figure 4(a) in Chun & Kim (2000), reproduced as figure 2(b)
above.

The amplification is reduced considerably for higher modes. Figure 7 shows the
eigenfunction and response curve for a bulb with W = 0.759 that is excited close to
the second harmonic, ω = 2.13π. In contrast to the fundamental mode, N = 320 and
the response has a relatively small amplitude and is hardening.
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Figure 3. Comparison of bulb response curves. (a) Experimental frequency response curves
at three (not identified) drive amplitudes at the small end of a bulb resonator filled with
R-134a. This is figure 14 in Lawrenson et al. (1998), with a bulb shape given by their equation
(5). (b) Frequency response of the fundamental pressure wave in a bulb resonator calculated
numerically for non-dimensional drive accelerations 0.25 × 10−4, 0.5 × 10−4 and 10−4. This is
figure 13 in Ilinskii et al. (1998); no equation for the bulb is given. (c) Theoretical frequency
response of the fundamental pressure wave in a bulb resonator, calculated from equation
(70), for drive accelerations corresponding to figure 13 in Ilinskii et al. (1998). (d) Theoretical
compression ratio (pmax/pmin) as a function of frequency for a bulb resonator, calculated from
equation (71), corresponding to the three drive accelerations in figure 4(a) of Chun & Kim
(2000).

Hamilton et al. (2001) found analytically for a slowly varying ‘cylindrical’ tube that
if 2λ1 > λ2 there was a hardening response curve, while if 2λ1 < λ2 the response curve
was softening. This is clearly not the case for the bulb resonator in figure 3 where
λ1 = 1.41π and λ2 = 2.22π.

We have examined the effect of the shape of a closed resonant cavity on the
nonlinear resonant oscillations of a lossless perfect gas contained within it. In
contrast to a circular cylinder, for resonant cavities shaped like a cone, a horn
or a bulb, unshocked resonant motions are possible for extremely high overpressures
and acoustic saturation is avoided. This is the basis for resonant macrosonic synthesis
(RMS). We conclude that a given gas can have a hardening or softening response
curve depending on the shape of the container. Different bulb shaped containers can
yield a hardening or softening response. Further, this hardening or softening response
can depend on the mode of the oscillation. The combination of frequency and bulb
shape that yields N ∼ 0 gives particularly large response amplitudes. The latter three
observations have not been reported in experiments.
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aspect ratio of 8, calculated from equation (70).
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Figure 5. Half cosine curves. (a) The half-cosine shape, approximated by equation (50)
and similar to figure 1(c) in Chun & Kim (2000). (b) Compression ratio as a function of
frequency, calculated numerically for three drive accelerations. This is figure 5(a) in Chun &
Kim (2000). (c) Theoretical compression ratio (pmax/pmin) as a function of frequency for a
half-cosine resonator, calculated from equations (50) and (71), for the three drive accelerations
corresponding to figure 5(a) in Chun & Kim (2000), reproduced as figure 5(b) above.
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Figure 6. Marginal response curves. (a) Bulb resonator shape with W = 0.759 that produces
the maximum compression ratio. (b) Theoretical frequency response of the fundamental
pressure wave in a bulb resonator with W = 0.75907. (c) Theoretical frequency response of the
fundamental pressure wave in a bulb resonator with W = 0.75908. (d) Theoretical compression
ratio (pmax/pmin) as a function of frequency for a half-cosine resonator with W = 0.75907,
calculated from equations (50) and (71), for the three drive accelerations corresponding to
figure 5(a) in Chun & Kim (2000).
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Figure 7. Second harmonic response. (a) Theoretical eigenfunction for the second harmonic in
a bulb resonator with W = 0.75907. (b) Theoretical frequency response of the second harmonic
pressure wave in a bulb resonator with W = 0.75907.
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